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Introduction 
 
In June 2002, the Australian Research Council (ARC) funded three-year ‘Linkage’ 
project ‘Understanding and manipulating stress physiology of eucalypt seedlings to 
improve survival and growth’ commenced.  This project builds on outcomes from the 
PhD project ‘Cold-induced photoinhibition, pigment chemistry, growth and nutrition 
of Eucalyptus nitens and E. globulus seedlings during establishment’, CRC-SPF 
Strategic Initiative Funded (SIF) projects ‘Seedling specifications for E. globulus 
planted in mediterranean environments, including SW WA and the Green Triangle’ 
and ‘Effects of environment on the leaf chemistry of Eucalyptus nitens seedlings and 
their resistance to mammal browsing’ and the Natural Heritage Trust and CRC-SPF 
funded projects ‘Revegetation to combat rural tree decline’ and ‘Demonstration and 
Farm Surveys of Eucalypt Seedling Tolerance to Native Animal Browsing’.   
 
The current project investigates the potential effects of nursery management on 
survival and growth responses of E. globulus and E. nitens to drought and 
vertebrate/invertebrate browsing soon after planting.  The objectives are as follows: 
 
1) To establish field trials to quantify survival and growth of seedlings of varying 

carbohydrate reserve across a range of drought/browser pressure risk sites; 
2) A physiological investigation of seedlings exposed to drought and browsing in the 

field; 
3) An investigation of seedling carbohydrate stores and remobilisation following leaf 

area loss in seedlings of varying carbohydrate store level; 
4) To develop nursery techniques for producing seedlings with characteristics of 

either acclimation to drought or tolerant to browsing. 
 
This report reviews current knowledge on the manipulation of eucalypt seedling 
morphology and physiology for improved survival and growth under some abiotic and 
biotic stresses encountered soon after transplanting from the nursery to the field. 
Acclimation to the planting environment, photodamage, frost, drought and the effects 
of seedling size under drought and browsing pressure on survival and growth, are 
considered. 
 
Acclimation between the nursery and the field 
 
Tree seedlings acclimate to the growing environment in the nursery.  If field 
conditions are colder than those in the nursery, the transplanted seedling will be 
stressed as acclimation occurs over several days or weeks. Many plant stresses have a 
negative effect on photosynthesis.  Thus strategies for dealing with light absorption 
under conditions of decreased photosynthetic activity are crucially important to 
seedlings suddenly exposed to new environmental conditions.  The occurrence of 
decreased photosynthetic efficiency is termed photoinhibition.  This may arise directly 
due to sudden increases in irradiance, or indirectly through a stress that limits 
photosynthesis and induces conditions of excess light absorption, e.g. low temperature 
or drought. Low temperature limits photosynthesis by slowing the rates of 
photosynthetic enzymes. Drought limits photosynthesis primarily through the 
induction of stomatal closure and carbon dioxide limitation (Chaves 1991). 
 
Photoinhibition occurs whenever the absorption of light energy exceeds its utilisation 
in photosynthesis (Huner et al. 1993).  Various physiological processes are available 
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in plants to dissipate this excess energy.  Three of these processes are the xanthophyll 
cycle, the capacity of which is proportional to carotenoid pool size (Adams & Barker 
1998), photorespiration, and the water-water cycle (see Niyogi 1999).  If their 
capacity for dissipating excess energy is exceeded, highly reactive and damaging 
oxygen and chlorophyll radicals are formed (Asada 1992; Foyer et al. 1994).  
Scavenging compounds and enzyme systems quench these radicals but their capacity 
can also be exceeded.  Damage to chlorophylls, carotenoids and lipid bilayers results 
in photobleaching or photodamage to plant tissues (Wise & Naylor 1987).  If severe, 
leaf death and abscission, and seedling mortality can result (Close et al. 1999, 2000). 
Acclimation to abiotic stress involves decreased chlorophyll content, increased 
xanthophyll content and increased levels of antioxidant scavenging compounds (Close 
et al. 2001b), thus providing protection against photodamage. 
 
A fourth means of photoprotection is anthocyanin.  This pigment is synthesised 
immediately below the epidermis in Eucalyptus globulus and E. nitens (Close 2001; 
Close et al. 2000; 2001b), Pinus sylvestris (Nozzolillo 1989) and Pinus banksiana 
(Krol et al. 1995) seedlings.  It is hypothesised that anthocyanin alleviates 
photoinhibition by absorption of light between 400 and 590 nm (Massacci et al. 1998; 
Close et al. 2001b). 
 
The acclimation condition at planting will depend to a large extent on the difference 
between the nursery and planting environments.  Some acclimation is always required 
as seedlings are grown at high densities and self shade in the nursery, resulting in 
lower leaf pairs being shade adapted. For example, nursery-grown seedlings of eastern 
hemlock (Tsuga canadensis) had survival of 58 and 100% after transplanting from 
shaded to fully exposed or shaded planting sites, respectively (Mohammed & Parker 
1999). 
 
The potential capacity of a seedling to acclimate to field conditions is also important 
(Close et al. 2001c). Different species and sub-populations within species have 
different capacities to acclimate to a large increase in irradiance (Battaglia et al. 1996; 
Tognetti et al. 1998).  For example, E. nitens seedlings have higher concentrations of 
anthocyanin and carotenoids than E. globulus seedlings raised under identical 
conditions (Close et al. 2000; 2002) and therefore require less acclimation after 
planting and exposure to high light.  Similar differences exist amongst conifers.  Sun 
scald or photodamage is a significant cause of mortality in seedlings of Tsuga 
canadensis, T.  heterophylla and Abies amabilis (Tucker & Emmingham 1977; Tucker 
et al. 1987) following transplanting.  However, rapid acclimation of pre-existing 
foliage to the higher light environments associated with field conditions has been 
reported for Picea abies (Spunda et al. 1993) and P. glauca (Leiffers et al. 1993). 
Acclimation to the prevailing light condition may be discriminated at species and 
subspecies level through the activity of the xanthophyll cycle (Adams et al. 1994).   
 
Management options 
 
One method of minimising the period and extent of acclimation after planting is to 
carefully match species to site characteristics.  This practice has been the focus of 
much research (Saunders et al. 1984; Booth et al. 1988, 1989; Booth & Pryor 1991) 
and has been adopted by the forestry industry.  The importance of the state of 
acclimation of a seedling at planting is also recognised in the forest industry.  Outdoor 
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nursery areas in conjunction with the withholding of nutrients and/or water are 
commonly utilised to ‘harden off’ seedlings (Colombo 1986; Gebre & Kuhns 1991; 
Anderson & Helms 1994).  The withholding of nutrients is usually an effective means 
of hardening for low field temperatures. For example, the risk of cold-induced 
photodamage was minimized when seedlings raised in a mild environment were 
deprived of N in the nursery as this induced acclimation to excess light conditions 
(Close et al. 2000). However, if exposure to low temperature before planting has 
occurred, N deprivation may not be required as seedlings naturally harden to cold-
induced photoinhibition (Close et al. 2001b, c). 
 
Frost  
 
Tree seedlings planted into cold environments are susceptible to frost damage for a 
number of reasons.  Firstly, the seedlings may not be acclimated to the low 
temperatures experienced after planting. Secondly, young, recently developed 
seedling foliage may have a high water content and relatively large-celled leaves with 
a low osmotic concentration, characteristics that are associated with a high 
susceptibility to frost.  Thirdly, cold air stratification and pooling of cold air expose 
seedlings to extremely low temperatures.  Fourthly, cleared forest sites attain 
minimum temperatures below adjacent forested areas due to the loss of infra-red 
radiation to clear night skies (Nunez & Bowman 1986).  In addition, the leaf 
temperature of exposed leaves at night may be lower than the air temperature due to 
radiative cooling (Jordan & Smith 1995).  Nevertheless, tree seedlings often adjust to 
the prevailing site conditions.  This is because tree seedlings acclimate, or ‘harden’, to 
frost.  Unusually early or late frosts can cause serious frost injury as seedlings may 
not be hardened.  Further, hardening occurs within certain genetic constraints.  For 
example, E. globulus has a lower frost tolerance than E. nitens under identical 
environmental conditions and this is a factor in its planting distribution (Hallam et al. 
1989). E. nitens populations from distinct geographic origins also differ in their 
susceptibility to frost (Raymond et al. 1992a, b).   
 
Low, non-freezing temperatures trigger increased frost tolerance or hardiness.  The 
physiology of frost tolerance involves a general relationship where hardiness is 
correlated with increased concentrations of soluble sugars and other compatible 
solutes (Ögren et al. 1997; Wanner & Junttila 1999) and increased cellular membrane 
stability via changed lipid composition (Thomashaw 1999).  A recent study has shown 
that the frost tolerance of Pinus radiata (D. Don) increases in a curvilinear fashion as 
low, but above freezing temperatures decrease.  Hardening occurred at temperatures 
below, and dehardening at temperatures above, 9.5ºC.  The balance between the two 
processes determined the development of frost hardiness (Greer et al. 2000). 
 
Management options 
 
Logging minimum temperatures in the nursery can provide an initial indication of 
potential frost hardiness.  Many nurseries are situated at low altitudes on mild sites 
that maximise the early growth of seedlings.  In this case, an intermediate holding 
area at higher altitude may be beneficial before planting onto cold sites, although in 
practice this may be difficult to manage.  Matching the hardening potential of species 
to site conditions is essential and widely practiced (Tibbits et al. 1997). Tree guards 
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can mitigate frost by excluding cold air flow at night and by trapping warm air during 
the day.   
 
Drought 
 
Drought-induced stress is the most widely studied and perhaps the most common 
cause of transplant shock in tree seedlings (Jarvis & Jarvis 1963; Burdett et al. 1983, 
1984; Grossnickle 1988).  Seedlings often become water stressed soon after planting 
as the soil volume accessed by roots of a naturally established seedling is over ten-
fold that of a transplanted seedling of the same shoot size (Burdett 1990).  Drought 
stress following transplanting may be further exacerbated by poor acclimation to the 
field environment (Rowe 1964).  In the nursery, seedlings are within relatively close 
proximity to one another, sheltered from wind and watered frequently.   Under such 
conditions leaves of high area:mass ratio and seedlings of high shoot:root ratio are 
formed which are not well suited to maintaining a favourable water balance in field 
environments. A low shoot:root leads to a better balance between root water 
acquisition and shoot water loss following transplanting (Ledig 1983) and a low leaf 
area:weight minimises stomatal water loss (Stape et al. 2001). 
 
Leaves have physiological mechanisms that provide adaptation to drought. 
Maintenance of leaf turgor, that is required for many growth-related processes, can be 
achieved through changes in osmotic potential or tissue elasticity (Tyree & Jarvis 
1982).  Adjustment in either osmotic potential, cell wall elasticity or a combination of 
the two occurs in both E. globulus and E. nitens in response to drought stress (White 
et al. 1996).  Osmotic adjustment, by decreasing the osmotic potential of the cells, 
increases water retention under dehydrating conditions.  This is achieved using 
organic solutes, termed compatible solutes due to their compatible nature with the 
structure and function of other cellular macromolecules.  Sugars and free amino acids 
contributed to osmotic adjustment in P. mariana seedlings during development of 
drought tolerance (Tan et al. 1992).  Increased cell wall elasticity involves increases in 
hemicellulose and decreases in lignin and cell wall pectin in P. glauca seedlings 
subjected to drought conditions (Zwiazek 1991). 
 
Management options 
 
A watering regime slightly restricting water availability to seedlings may induce 
morphological and physiological characteristics conferring drought tolerance.  An 
induced water limitation decreased leaf mass:area ratio which was associated with 
drought tolerance in P. sitchensis (Hellkvist et al. 1974).  Droughting in the nursery 
decreased osmotic potential in seedlings of Eucalyptus camaldulensis, E. tereticornis, 
E. viminalis and E. grandis (Lemcoff et al. 1994) and decreased osmotic potential and 
increased cell wall elasticity in P. mariana seedlings that led to the development of 
drought tolerance after planting (Colombo 1986).  However, this may be difficult to 
manage given the rapid drying of potting mixes and the problem of subsequent re-
wetting. 
 
Seedlings for favourable sites 
 
Nursery managers use macronutrients to manage seedling growth and to meet a 
particular seedling specification. Foliar nitrogen has been shown to correlate strongly 
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with seedling growth after planting (Carlson 1986; Larsen et al. 1988; Thaler & Pages 
1996; Close et al. 2001a). Seedlings deficient in N put all their available resources 
into root growth, to acquire N, at the expense of shoot growth.  Recent evidence has 
indicated the importance of N stored in foliage, and its retranslocation, for new 
growth (Close 2001; Warren and Adams 2001). Internal recycling of nutrients from 
foliage has been shown to supply up to 100% of nutrients for new growth soon after 
planting (Folk & Grossnickle 2000). 
 
Management options 
 
Sampling for foliar nutrient analysis is widely practiced and indicates the necessity for 
corrective nutrient application during the seedling production period. Trials of nutrient 
application methods for nurseries under well-defined environmental conditions (Close 
et al. unpubl.) and using potting mixes that affect the leaching (Geraldson 1996) and 
draw-down (Bragg & Whiteley 1995) of nutrients have provided useful information.  
For example seedlings at nurseries in regions of high temperature and rainfall need 
higher levels of nutrient application for a given level of uptake as more nutrient 
remains in solution and leaches out of the potting mix.  Seedlings in potting mixes 
with higher air-filled porosity and higher microbial populations also need higher 
nutrient application for a given level of uptake as leaching and draw-down are 
proportionately greater.  Also given that foliar N content is proportionate to foliar 
chlorophyll level and influential on specific leaf area (i.e. leaf thickness), nursery 
managers can gauge seedling N content by eye. 
 
Carbohydrate reserves  
 
Biomass partitioning 
 
Low shoot:root ratio is desirable for maximising new growth after planting.  
However, shoot:root is relatively high after nursery production in containers and this 
restricts acquisition of sufficient nutrients and water to support shoot growth after 
planting (Ledig 1983; Reitveld 1989; Close 2001). For example, growth of P. taeda 
seedlings after planting was strongly negatively correlated with shoot:root at planting 
(Larsen et al. 1988). The physiological basis of this effect has been investigated using 
just transplanted, non water-stressed Picea mariana seedlings.  The seedlings had 
decreased levels of all foliar macro- and some micro-nutrients, total amino acids and 
sucrose relative to non-transplanted controls (Young et al. 1999).  These results are 
consistent with those in recently transplanted Eucalyptus seedlings (Close 2001) and 
are indicative of re-translocation of mobile nutrients to enable new root growth. 
 
Container depth has been found to better correlate with seedling growth after planting 
than container volume and many other pre-planting seedling specifications (Close et 
al. 2001a).  Deeper containers do not necessarily decrease shoot:root but affect root 
architecture by increasing the initiation of primary roots in the container (Nelson 
1996).  Thus the initial soil mass occupied by roots increases with increasing 
container depth.   
 
Relatively large seedlings are inherently robust to stressful growing conditions (South 
1993; South & Mitchell 1999). Levels of carbohydrate and nutrient reserve are related 
to seedling size (Ritchie 1982).  For example, the larger of two Pinus banksiana stock 
types of otherwise similar genetic origin and age had greater survival and growth 
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relative to the smaller stock type (Mohammed et al. 1998).  In the same study, larger 
amounts of available, retranslocatable nutrient were associated with higher 
photosynthetic rates (Mohammed et al. 1998).  Adequate carbohydrate reserves are 
essential also under conditions where photosynthesis is restricted but resources are 
still required for maintenance respiration and to support new leaf development where 
stress (e.g. severe drought, frost or browsing) has led to leaf loss after planting.   
 
Biomass and drought 
 
Empirical observations suggest that larger seedlings are more robust to drought in 
Australian plantings.  P. pinaster that had been repotted into 1L ‘Jumbo’ containers 
(approximately 40 cm tall) had survival of 60-70% after planting into deep sands 
under dry conditions compared to approximately 30% survival of stock grown in 
standard sized containers (Arthur Lyons pers. comm.). Further, seedlings of 
Eucalyptus perineana, E. viminalis, E. ovata and Bursaria spinosa, that had been held 
over in the nursery and repotted into 1L containers, had superior survival and 
performance compared to smaller stock raised in standard sized containers on a upper 
slope site with shallow soil (Close and Davidson 2001).   
 
Biomass and browsing 
 
Relatively large ‘half/half’ stock only suffered 4 % mortality and there was little 
effect on growth compared to relatively small container stock that suffered ~25 % 
mortality after planting onto a high browsing pressure site (McArthur et al. 2002). The 
large half/half stock with high root collar diameter have proved resistant to stem 
nipping by European rabbits and are more likely to survive severe wallaby browsing 
relative to container stock (R. Appleton pers. comm.).  However they are prone to 
drought susceptibility and mortality during summer drought (McArthur et al 2002) 
due to imbalanced root:shoot caused by the root pruning treatment in the field 
nursery.  Future research is investigating the use of containerised stock that has been 
‘held over’ in the nursery and has a relatively high root collar diameter and woody 
stem (R. Appleton pers. comm.). 
 
Nutrient loading of hardy nursery material immediately before planting, either by 
placing mini-osmocote at the base of seedling plugs in the nursery with E. nitens or by 
a 2-3 liquid fertiliser rate application for E. globulus, has resulted in significantly 
greater growth soon after planting that allows seedlings to rapidly out-grow browsing 
wallabies (R. Appleton pers. comm.).  E. nitens with mini-osmocote on the bottom of 
containers had better survival than controls after summer drought, possibly due to the 
roots ‘chasing’ nutrients that leached down the soil profile (R. Appleton pers. comm.). 
 
E. globulus that were 0.5-1.0 m in height were planted onto a site of high browsing 
pressure in 2000 in order to investigate their robustness to browsing (H. Cusak pers. 
comm.).  It was thought that the increased woodiness would be more resistant to 
damage, and that the seedlings would be able to re-sprout leaves after browsing.  The 
seedlings were planted in early winter and little mortality was observed, although the 
seedlings did not appear to put on much growth for some time.  A noticeable 
disadvantage was that the top-heavy seedlings were prone to windthrow that was 
exacerbated when leaves sprouted only from the very top of the stem – giving a 
standard rose-like appearance (H. Cusak pers. comm.).   
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Management options 
 
Increasing seedling size ensures an adequate carbohydrate and nutrient reserve after 
planting (South & Mitchell 1999) and can increase cost:benefit more than site 
preparation and establishment practices such as insecticides, herbicides and fertilisers 
(South et al. 2001).  However, this should not be driven by an increased shoot:root 
ratio which can be detrimental to successful establishment (Larsen et al. 1988; 
Zwolinski and Bayley 2001). Seedling production in larger plugs (i.e. >100 cf. 50 
cm3) with adequate, but not excessive, fertilization, and minimising the holding period 
in the nursery to keep down shoot:root may be desirable.  Avoidance of shallow 
containers will ensure root architecture does not limit seedling growth after planting. 
 
Seedling resistance to browsing 
 
Browsing of E. globulus and E. nitens seedlings by swamp wallabies, European 
rabbits (Clunie and Becker 1991), red-bellied pademelons and common brushtail 
possums (Bulinski 1999; Bulinski and McArthur 1999) is a significant cost to the 
forestry industry.  Browsing often occurs soon after seedlings are planted (Bulinski 
1999).  It has been shown that nursery management can reduce the palatability of 
seedlings to herbivores (Marks and Moore 1998; McArthur et al. 2002a, b).  When 
nutrients are limiting seedlings produce greater levels of foliar tannins.  Tannins act as 
digestibility reducers or as toxins to herbivores (Hagerman et al. 1992, Foley et al. 
1999).  Investigation of seedling nutrient application treatments in feeding trials has 
shown up to 2-fold greater intake of high N (> 1.8% DM) seedlings c.f. low N (0.6 % 
DM) seedlings by pademelons and possums under controlled environment 
experiments (McArthur et al 2002a, b).  However, seedlings with intermediate foliar 
N content (0.80 – 1.0 % DM) were not browsed significantly more than seedlings of 
low N content (0.6 %DM).  Investigation indicated that browsers responded to leaf 
nutrient content and leaf toughness (McArthur et al. 2002a).  These results have 
translated to field planted E. globulus and E. nitens seedlings (McArthur, 
Pietrzykowski and Close unpub results).  Although preliminary, low N, high tannin 
seedlings were relatively resistant to browsing compared with high N, low tannin 
seedlings, although no difference was observed at a site with very high browsing 
pressure by pademelons and wallaby.  An alternative is the use of browsing repellents. 
Research has indicated that Neem seed extracts containing azadirachtin, a repellent 
with a pungent odour imitating the smell of urine of predators had a modest effect, but 
that wallaby-repellent (WR-1) – a spray on grit – was highly effective on foliage to 
which it was applied (Witt 2002).  Spraying of WR-1 in the nursery has proved 
feasible, although two applications may be necessary on E. nitens for sufficient 
adherence (C. Martin pers. comm.).   
 
Management options 
 
Avoiding high rates of nutrient application to E. nitens is warranted if browsing after 
planting is a concern.  Nutrient application resulting in foliar N concentration of 0.8-
1.0% DM may represent the best trade-off between seedling resistance to browsing 
and growth potential after planting.  In-nursery application of WR-1 is feasible and 
may be cost effective. 
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